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1. Introduction :

In their seminal paper, Fujisaki, Kallianpur and
Kunita {1} showed how the best least squares estimate
of a signal contained in =dditive white noise can be .
represented as a stochasstic integral with respect to
innovation process, the integral being adapted to the
observation process. The difficulty with this repre-
sentation is that in general this estimate is not
useful for computing the estimate since the innovations
process depends on the estimate of the signal itself.
In this paper we discuss representation of the estimate
directly in terms of the clservation process. In
doing so, we derive new results on multiple integral
“expansions for square-intezrable functionals of the
observation process and show the connection of this
work to the theory of contraction operators on Fock
space. This letter development is due to Nelson and
Segal.

We also present several applications of these
results to determining sub-optimal filters.

2. Multiple Integrals and Filtering

In this section, we srkall discuss applications
of multiple integral expansions to the general fil-
tering problem. We will consider the 'canonical’
scalar filtering model:

yt=£t h(xs)ds + Vt (1)

under the assumptions
a) xtand v, are independent processes
b) for some T>0 EgThz(xs)d“m (2)
c) v, is a stendard Brownian motion

ir ft(x(.))=ft(xs,s_<_t) is & causal functional of the

signal x, and F{Ec{ys[0§§§p}5 sub-O-algebra generated
by ya,0§§5ﬁ, then we are interested in calculating the

optimal least squares estirate of rt(x(‘)) Z

Elr, (x. ))Ir{} for t<T.
Definition 1 y, defined in (1) and (2) is called an

observétion semi-martinzale.
Throughout, let (,F,P) denote the underlying proba-
bility space.

Now E{ft(x)le}eL(ﬂ,Ff,P) (=(F{ measurable rv's})

by the definition of conditional expectation, and,
therefore, any method that represents elements of

L(Q,~,P) in a simple and consistent way, say by y
expansion in terms of a sirple class of functionals of
y(.) can be applied to the optimal estimate, In

this work, we have adopted multiple integrals of
the form ét..gsr'lk(t,sl,..sr)dy(sr)..dy(sl)

as the basic objects of exransion. First, Yy is a
stochastic translation of Zrownian motion and

through a change of measure, much Brownian theory can
be carried over. Secondly, iterated integrals proyide
the natural concept of a polynomial in the y process
and thus they give a framework for considering best
quadratic, cubic, etc. sutortimal estimation pro-
cedures. Finally, when the kernel k of

t osr-)
zt=£"£ kdys,"dys' is separable, a construction of

Brockett [2] realizes z recursively as the solution

t
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to & stochestic differential equation,
Accordingly, after developing some theory of multi-
ple irtegral expansions we show how E{tt(x(.lllF{} can

be recresented as a ratio of multiple integral
expansions. The chief theoretical result about rmulti-
ple integrels, the multiplication formula of theorem 2,
is then used in conjunction with this representation
to derive eguations for the best suboptimal estimate
of any order. The Kulrman filter 1s derived and the
quadratic filter discussed in detail as examples.
Multiple Integrals. Inwhat follows, let (b(t),Ft)

denote & standard Brownian motion w,r.t. increasing
family of sub-O-algebras Ft' We assume familiarity

with the stochastic integral £t¢sdb(s), vhere¢’(u) is

a measurable process adepted to (Ft)tzp.

Bt o B n
Definition 2 Let feL“({0,T]1")={reL"([0,T)")|f symmetrich
I(m) (£), the nth order multiple (or iterated) integral
up to t<T of f, is defined recursively by
(n) y_to(me1)
I, (=TT 77 1 (s, )an(s) ey (3)

In (3), f(s,~) is the function of La([o.'rj"'l) formed
by holding the first element of f fixed at s. trictly
speaking, for (3) to maxe sense it must be shown that
I(n-l)(
s
easily be done by epproximating f with separabtle

t,t
functions. lLet (f,g)=£"£ f(sl,-.,sn)g(sl,..,sn)dsn..ds1

denote the inner product of L2([O,T]n). By applying
standard facts about stochastic integrals, the following
basic properties of the multiple integral are derived:

for any n and m, t<T, and feLz([o.T]n), geLz([o.T]u)
&) 21 (£))=0 )

b) E Ién)(f )I§”’(8’=f§’/§f(?’f3> 1f m=n

Note 2lso that Iin)(f) depends only on the values of
(s seps,) for s;>s,>.3s . (3) adopts the useful
convention of allowing f to be defined in all of

[0,T]" by a symmetric extension. - 3
Multiple integrals ere useful in constructing

Wiener's homogeneous chaos expansion, which as an w

example of the pgeneral theory presented later, decomposes

£(s,~)) has a measurable version, but this can

L2(F:) into a direct sum of Hilbert space tensor
products. Indeed if K =R, HnE{Iin)(f)IrcLz([O.'r]")} n>1

a simple zpplication of (4) a) and b) demonstrates that
H is a Hilbert space for every n and that Hn_l_!lm for C;
—

n#m [vhere | is defined in the sense of the inner
product (x,y)=Exy]. 1In fact we have more:
Theorenm 1 (Ito-Wiener)

2,pby_
L7(F )=H @ H e H e ......

That is, for ¢€L2(Fb) kernels {k_}*
= (n) t n p=
O—k°+ n=1lt (kn)

Proof. See Ito [ and Kallianpur [4.
Theorem 1 suggests the following natural question.

Suppose £e1°([0,T]") and geL2([0,T]™). TIs it then truel
that If‘“)(f)xi"‘)(g)cr?(r:') for t<T, and if o, vhat I
are the kernels {kii. as in (5), such that I:(r)I:(g)

exist such tm

0
(5) e
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=k°021 -~ :1)(ki)7 Qur enswer, which will become a

principal tool of investigation, requires some
preliminary notation.

Definition 3 1) P 2131 dencte the projection of
2([0 7)) onto L, ([0 T]1%)
) |
(p h)(s ey znes(n)h(sﬂ(l)‘"sﬂ(n))
where S -permu atio1 aroup onn lctters.
ii) Let O<k<min(zm,n) rer?([0,7)), ger?((0,T]™)

(fﬁk(t)s)(sl’ ‘9 ak) - (6)
'"i':£"'é'f(rl"""k'sl"'s B TS S o )arydry
(fek(t)S)(sl"sm+n-2k)=("n+n-2_1g[fa (t)g])(sl., mtn-2k) (7)

To illustrate, if n>m=k, then using the symmetry of
f and g, (19 (t)g)(s;-s ) g g 1lry -y )

1’ It is useful to think of the fune-"
tions f and g as tensors, for, in fact L ([o,T]™)

=L [0 T]nnﬂLz(lo T]) (n times), Therefore, as inspec-
tion of (6) and (7) suggests, 0_(t) may be interpreted
as a k-fold symmetrized tensor contractionm,

Theorem 2. Let fe12([0,71™), geL2(10,71™). Then
Itn)(f)ltmlg)cl.?(Fb) for t<T and,

(n)(f)l(m) t:i;(m,n) (m+n—2k)[(m+n72kfe (t)g] @)

l n m
xg(r Ty )dr .dr

Before sketching a proof, let us first demonstrate
that the 1l.h.s. of (8) is well-defineq,

Lemma 1. Let feL2([0,T]%), ger?([0,T]™). For t<T

£0,( )eer2([0, 7)™ 7).

In fact lIi‘tZik(‘t-)znzlﬂ‘,u PO "ﬂﬁ"&lﬁ (91

where C depends on m, n end k,
Proof, Let lsn|= cardinslity (S ] and y=min-2k,

Using Cauch¥-?chwarz repeatedly:
1 S W2
lkekwdlji%d_-"%?l Eres(s) I8 (eloy(y )8y M

and
. B
lles, € t“)g(*’ﬂ(l)"sﬂ(.j))|§)=(T<!_)"’ § 6 %5n(2)"%n(y)

v b 2
3([£ £ £( sl..sr,sﬁ(l).. )g(rl..rr,..s“(J ) )drr..drll

<tenyelieiBlsid
mus e, (¢3gl, < 1S e 2

Proof of theorem 2*: Only a sketch will be given, as
details are involved and unrevealing. First, it
suffices to treat the case when f and g are secparable,
since we can use lerma 1 to approximate general

f andg by separabtle functions. This makes questions
concerning the interchange of dt and db(t) integrations
easy to resolve. The case n=1, m=1 follows directly
by applying Ito's differentiation rule. Indeed, Ito's
rule yields in general

101l (g) = 11 (010D (2(s,)av(s) ¢ (20)
£ 01 s, 0apn0e) + 10 (5(s,0)

% 1" (g(s.))as

Using (10) we can implement the following two stage
induction scheme to prove the theorem for all m and n,

*¥Apparently, Japunese workers have also recently
proved theorem 2 by means of functional analytic
techniques due to Hida (Personal communication from T.Hida)

°

a) The case (m,n)=(k,1) implies the case (=,n)={+1)
b) The cases (m,n)= (k- 1,3), (k,3-1) and (x-1,:-1)
imply the case (k,J).

Equation (8), the multiplication formula, is sctu-
ally a generalization of similar looking Hermite
polynomial identity

h () (x) = SRR (B (B rra-Bhyly () 0

vhere b (x)= —:llﬂ -x2/2(d /dxn) x2/2, To unders=z=d

the connection, observe that the polynomials hm\x,
provide an alternate means of constructing the
decomposition of theorem 1. 1In fact if (¢i i=1
is a complete orthononual basis of L ([O,T]) and
Gn=Span{ﬁ 1 h £ ¢i(“(s)db(s))lpl+.. IV T

pairwise unequal}
then Ito [ 3 ] has shown that H =G (T denotes cicsure).

(See alsoKallianpur [ 4 1).
Ién)(f)eﬂn is a generalization of a Hermite polymc=iei.
The slight discrepency between the factors in (1.) and
(8) arises from the nornalizations involved in th
definitions of h s I and ﬁk

(8) has consequences that relate directly to tze
theory of contractions on sums of Hilbert spece tezsor
products presented in a later section. The point is
that the multiplication formule can be used to s:uly
the integrability of kth order moments of the intezr

Iém)(f), and,indeed, a direct epplication of (8) using
lemma 1 and a recursion argument yields:

e
Theorem 3 Let n>1 and feL2([0,T]). For any k>2,
there exists M >0, independent of f, such thaz

E[I,i,n)(f) ]"’kg.\xm:klﬁlsk. (22)

Thus a typical elermernz

Now, Segal [ 5 ] has previously derived (12) by tecsor
product operator arguments, end, in addition, proves
there exists a constant ¢ such that M(m,k) may te

replaced by k2Ckn. His argument thus connects (12}

to a deeper general theory.
Theorem 3 has an interesting corollary.

Theorem U Let {fh}:= and f be functions in L ([:,:fn
Thea lim ||fm-f!E=o iff lin E[I,gn)(fm)-l,gn)(f)]
irf lin E[Ié,")(fm)-xé")(r)]aho for any or all x.

Proof By (lb) E[Ién)(fm)—l‘gn)(t)]2=%llltm—tli.
Using (12) completes the proof.

" @

'

In the applications, we shall want to discuss
rultiple integrals not with respect to Brownian =:zticn,
but to an obscrvation sevi-*artingale LA We again '~

denote these integrals by Itn (f) without explici+ly
indicating the dependence on y, , ¥hich should be

clesr from the context of their use, The simplest
definition of such an integral uses a result stated i
theorem 53 nanely, under condition (2) there exis“sa\<'
& measure P on (2,F) such that i) Yy is Brownian

on (R, 'I-.P ). and ii) Poand P ere mtuany ADSOLULELY e

-

Y

continuous. >
Definition 4 For t‘eL (fo,TI™)
1 (g) = gtgon _’f(sl..sn)ay(sn)m(sl) -~

is a r.va.s. cqual to the Brownian multiplc integr
defined on (@, F, P ).
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?y absolute continuity, Ii“)(r) is a well-defined r.v.
on (R, F, P). Also, as further argument will show,
I&n)(f) equals the iterated integral defined directly
on (R, F, F) in the manner of definition 2, and thus the
‘natural’ interpreteaticn of Iin)(f) as an iteration

is preserved. It immediately follows from definition L
that the multiplication formula holds for the obser-

vatian semi-martingale case. Likewise, if Eo(§§6)2°”
(o) py12% _ QP ¢ (a) _n2% .o 2.% {n) .yl
then BT EN%* <6 3P 112Xm0 % <(2 GF 124 (B (1M (e F
shows that theorem 3 extends as well,
Finally, it is important to compute the mean and
variance of integrals with respect to Vo

lemma 2 Let E(éThz(xs)ds)n«n. Then for k<m and

zer®(10,71%),

=k 2 2
1) E[T.(£))°21 ﬂik (M}rdoes not depend onf)

1) E[ If(r)] = g*’--gs (r-l)f(si--sr)E[h(xsm)..h(xs er)}dsw.dim

Proof The proof proceeds by induction on the order
k, and the induction stops at k=m because of the

condition E th2(xs)ds)n<ﬂ°. Details will not be

presented for lack of space.

Filter expansions and avvlications, We will now
show that the Kallianpur-Striebel formula, (13),
for the optimal estimate can be developed into a
representation of the estimate as a ratio of two mult-
iple integral expansions,: This technique bears compar-
ison to the work of Eterno [6 ], who derived simular
expressions in an effort to approximate the conditional
distribution of the signal given the observation
process. Here we focus on the use of the expansion
to derive equations for suboptimal filters.

Recall the filtering problem 1)-2), Denote
h(x(s)) by h(s),

£, (x(- D by £(t), end Ble(t)|{F}oy r’@), and define
- L(t)=expl{ n(s)ay(s)-1/2f n%(s)as).

Also, define a new measure P_ on (Q,F) by

Lo= exp [-f*nls)au(s)-1/2 7 (s)as].

Theorem 5 Under the hypothese of (2)
i) A is a probatility measure and P and P

o k]
ere mutually absolutely continuous with %o-'-;L(Tl.

ii) Under Py v(t) is 2 Brownian motion independent
of x(t).

iii) x(t) has the seme distridution under P _as
under P 4

iv) (Kallianpur, Siriebel)

B(e(e) [F])=E (r( ) (R VR0 7))
=B {r(t)L(t) [F]}/E {L(t)|F),

(13)

Proof See Wong [7 ],
t T
Let Ly (0)=f% L5 Pn(s )on(s 1(s Jay(s )uay(s,).
Theorem 6 a) Partial expansion

Suppose E[éthz(s)ds]r«’ and E[rz(s)(gth?(s)ds)r]“’.
Then {(})L!:t'(t)n’,'ﬂ}g”(k,]+E°[t(t)1q(t)|r{],(1).)
g1 JeE (L (6) )

vhere kJ(t, sl,”nJ)=E[f(c)h(sl)uh(sj)] and

IJ(slnsJ)=E[h(s1)nh(sJ)]
b) Full expansion. If E[exp[éthe(s)ds]]<° end

Efz(t)expéthz(s)d?<;. then
@ J)
Ef(e)er, 17 [K,]

r(t) = ki,
(o p] > (1s)
1+233’=1It lle
where kJ and 1J ere as above and the infinite series

both converge in the Ll(P) norm.

Remargs 1. The xernels k; and 1J depend only cn the
apriori distribution of x(t).

2. The condition E{exp[cf,thz(s)ds]km in (6) places
strong restrictions on the growth of the moments of
gThz(s)ds. Moreover

)2

B (S5, )7 =5 2, fempl2 nla)ay(s)-{"n"(s)as ) 77

=& _exp[-{"h°(s)asJE_{exp2f h(s)ay(s) [F}}
=E°exp[£Th2(s)ds]

2% »
since g*h(s)dy(s) conditioned on F: is normal with

7 7.2
variance ["h%(s)ds.
3. Theorem 6§ can be generalized without dAifficuity to

vector valued processes.
Proof of theorem 6; For lack of space we give only an

heuristic sketch. The principal idea comes frc=
observing that, by using Ito's differentiation rule

dL(t)=n{t)L(t)dy(t). In other symbols,

L(t)=1+{"n(s)L(s)ay(s) (16)
By iterating (16):

L(t)=1+L n(s)ay (s)+£* £ n(s Il ILlr)ay(e)ay(s).

Continuing such iteration ad infinitum we cderive the
formal expression

L(t)=1s7y, {54531 n)-n(s lavis )ay(s)). 17)

Now substitute (17) into the term EO[L(t)IF{]. Ve get:

E L&Y 1=1+z‘;'= Eo(gt..ésd=1h(s §)-bls day(s,)-ay(s =03
=14Ey_ ) £5£*972E, (n(s) )nle )| FYdey(s )-ay(s)
=2 [O[I72E (ns) )onls, ) hay(s,)-ay(s, )
1437 1(“(1"). (28)

The second eguality uses & stochastic 'Fubini' theorem
found, for example, in Liptser and Shiryayer [g ]; for
the process o{s) adapted to the Brownian moticn

(bt’ Ft) end satisfying E[£T¢2(s)ds]<m
E(f"6 av(s)[Fy} = £TE[6_|FDlav(s).

The third equality follows from Theorem 5 ii)end 1ii),
and the fourth equality by definition. By a sinilar
calculation,

c1as® 1(d)
Eoff(t)L(t)lF‘:}—l-bZJ:lIt (k,), (19)
Now (18) end (19) can be substituted in

£(t) =E_{r(t)L(t) |} }/E {L(t)|F})

to formally derive theorem 6, b). The partial expansion
if proved by carrying out the iteration procedure of

(16) only & finite number of times. The various
hypotheses in theorem 6 merely guarantee that the
steps in each calculation are valid,

I ———




3. _Applications
3 ! The explicit formulas (14) and (15) can be applied
r‘ 1 to the design of suboptimal filters in verious ways.

1& For example, one naive approach would be to truncate
the numerator and denominator of the ratio at finite
}‘. ‘ orders and use the result as an approximate filter.

] As noted in the remarks after theorem 6, the kernels
of the expansions do not involve the observations y(-)
and so can be computed off line. Theoretically then,
it is possible to construct the truncated filter.
This design, however is difficult to analyze and assess;
a more interesting use of theorem 6 involves finding

.

p i § estimates that are multiple integral expansions of
48 finite order.

F.f Definition 5. a) An expression

|

- ettd=e 1)+ £ 1{"(a ()

3

.

N\
-with cp(t)EL ({0,T]™) is called an rth order expan-
sién of y(-).
b) An rth order expression a(t), satisfying
E[r(t)-a(t)]%< E[£(t)-c(t)]?

for any other rth order c(t), is called the best rth
order estimate of f(t).

The best rth estimate will be denoted by f(t) (with
r understood), and its kernels by a 0?82 B

Given an order r, how can we find f(t), that is
how can we determine a ,a ye+38 7 As it turns out, we
can apply the mu1t1p11gat10n fofmula to the filter
expansion to write integral equations for the kernels
a . Begin by considering the product r(t)EolL(t)lel

of the estimate with the denominator of (13). If

E[£Tﬁ2(s)ds]2r<m

then the expansion of E [L(t)liy] in (1L4) applies, and

£(0)E [L(O]FY 1=[a (¢)+7_ T i“’(an(t,)nn"’fl )

v zo{nb(t)lr{}1=sow+,z?:1 1{% (g (4 2(VE J1, (6)|FY). (20

The &y n=1,..3r are calculated from nn(t) and ln(t)
by use of the multiplication formula.
Theorem 7. Suppose E[£Th2(s)ds]2r<w 5 Era(t)<~

and zr2(t)[;Th2(s)d312’«~.

7{n)

Then T(t)=a (t)+£n_1 +

estimate iff

(an(t)) is the best rth order

go(t)=Ef(t) (21)

zn(t,sl..sn)=2(f(t)h(sl)
Proof':

««h(s )}=k_, 1<ngr.
We must show that

E[£(t)-£(t)]%<E[ £(t)-c(t)]? (22)

for all nth grder expansions c(t) iff (21) nolds.
Recall that f(t) may be interpreted as the projection
of £(t) onto L (Q, F{,
theorem implies
EL£(£)-F(t))%=E[£(t)-F(¢))2E[}(2)-F(¢))?
+ 2B[£(¢)-2(2)1(2(6)-F(L M=l £() -2 2B £(£)F (L )2

Applyiug this calculation to the r.h.s. of (22) also,
(22) holds iff

E[R(t)-T(t))%<ElH(1)-c(t)]?

Thus the projection

(23)

for all c(t)., But according to lemma 2, the set of rth
order expansions in y(+) is a Hilbert space, and thus,
applying the projection theorem again, (23) holds iff

(2x)

'Nov substitute the

E[f()-F(t)]e(t)=0

for all rth order expansions c(t).
expression (13) for £(t) into (2L):

E Ur(t)L(e)F)}-F)E {L(t)|F)}
. c
B )R]}
~EE{Ee FIE (£{0)u(e) |F])-F(eIE (le) | Fle(e)
=E_[E_{£(t)L(e) [F}-F()E (L) [F }e(t)]
The secord equality in (25) uses the identities
B(GEe IR )=(e (1PN~

=1
=(E_{L(t) |17,

E[£(t)-F(t))c(t)=z]

(25)

which are easily demonstrated. Now under Pd.y(°) is

& Brownian motion and integrels of different orders
are orthogonal. Thus, using (20) and .

B (R0 [ 3=Er(e o2l T (i )4, ()1 (6) )

in (25) s
E[F(t)-£(t)]c(t)=

+E [ £(t)e()E T, (¢) |F)]
4B [e(VE (1001, (O]

=3, ()-8, 425 1) (x -6 )le(t)
(26)

An epplication of lerrza 2 show that the second and
third terms of the r.h.s of (26) are zero for all c(t).
Clearly, the first tern can be zero for all nth order
c(t) iff k=g for O<n<r, end this completes the proof.

The equations (26) are actually integral equations
for the kernels an(t) of the best rth order estimate,

since the gn(t). 0<n<r, are found from an(t),ogpjp,
by the formule(8).To illustrate, if r=1, ll(s)=Eh(s) and
Ef(t)=g (t)=a (t)+{ e, (t,u)En(u)av
Ef(t)h(s)=g,(t,s)
=a°(t)Eh(s)+al(t,s).
Solving for ao(t).
al(t,s)+£ta1(t,u)cov[h(s),h(u)]du=cov[f(t),h(s)].
This is the familiar Wiener-Hopf equation for the best
linear estimate. In the best quadratic (r=2) case, the
equations become more complicated. They are, assuming
Eh(s)=0, Ef(t)=0 fcr simplcity,
8 (t)==f g‘l 2,(t, uy, u,)En(u, Ih(u,)ds,ds, (27a)
al(t,a)=zf(t)h(s)-g e, (t,u)En(s)h(u)du
-£t°?1 az(t,ul,ua)cov[h(s),h(ul)h(uz)]duadu1 (27v)
az(t,sl,s2)=cav[f(t).h(sl).h(sa)]
-£tal(t,u)cov[h(sl),h(sa),h(u)]du
-ét(az(t,sl,u)Eh(szh(u)+a2(t,sz.u)Eh(Bl)h(“)]du

-gtoyl nz(t,ul,uz)cov[h(sl),h(sa).h(ul)h(u2)14“26u1(270)
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[In (27). cov [xl,..xr]ez(xj—le)...(xr-Exr).]

(27) shows how the kernels of different orders are
dependent on one another. Though not a standard
integral equation, (27) may be reduced, by using the
solution of a related linear estimation problem, to a
single integral equation for a,. For fixed t this
equation is of Fredholm type for a,(t,*,*) and can
be solved by standard methods. We shall not go into
this theory here.

The multiplication formula can also be used to
derive the Kalman filter. Consider the simple case

dx(t)=dv(t) x(0)=0

dy(t)=x(t)dt+dw(t)

vhere b(") and w(') are independent Brownian motions.
" Then we can show that the optimal filter is

?(t)=£ta(t.S)dy(S)

where t
al(t,s)+£ al(t,u)Eb(u)b(s)=Eb(t)b(s). (28)

The proof is simply to show that a(t,s) can be chosen
so that

Be)=glate,odayts)=er(e)er] 10k Sy 1 Jes)

t e (3) g = _(3)
ga(t,s)dy(s)[l-rtd'llt (1J)]-Er(t)+z3=11t (kJ).(30)
By expanding the 1l.h.s of (29) using (8), and
equating kernels of different orders we derive the
infinite set of equations.

or

Ja(t, 1o (t)1y ) +a, (t,0)0, ()1, =k . (31)

It can now be shown that if (31) is satisfied for
J=1, it is satified for all j>1, a result following
from the identity for Gaussian random variables:

11(51..33)=Eb(sl)..b(sd)

g=2cov(b(sl)b(sz))E[b(sz)..b(sJ_l)b(sJ+1)..b(sJ)]

(see Miller [ 9 ]. This derivation is somewhat formal
because the condition for the full expansion in (29)

to hold is that E[expgtba(s)ds]<”, which is valid
only for small t.

=L

L. Relationship to Second Quantization
(After Sepgal and Nelson).

Let H be a real Hilbert space and let F:H*RV(Q,A,u)
be the unit Gaussian determined random field. If
fl..,tn are orthonormal in H and ¢ is a Bounded Baire

£ n
function on R, then

- b2/2
6¢(F(fl)""F(fn)_(ZW)n/2£n¢(x)e‘| %

For concreteness (R,A,u) may be chosen_to be countably
=1/ 2
infinite copies of (R,B(R), (27r)1 2¢x"/ dx).
If E donotes expectation on (R,A,y) then
oneq))=0 (32)

E(F(fl)..F(an))ﬂ[fil. fjll...lf1n, fjnl (33)
vwhere the sum is over all pairings of 1, ...,2n, i.e.
11<...<1n; 11<J1,...,in,3n, and

E(F(fl)..li‘(f

(4,43,5.-+51_,3 ) is a permutation 1,...2 .
1°91 n'n n
LP(,AM) is denoted by IP(H) andT() denotes

L2(x). I'(H)<n be the closed linear span in T'(H)
of all elements of the form F(f.)...F(f ) with m<n
and let P(H)n denote the orthog%nal comPlement of

= S —— — e
. e ——— e et = S —
- »
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P(B)<n_l in P(H)Sp. For f

Wickﬁ}olyuomial:
:F(fl)...P(rn):

to be the orthogonal projection of F(fl)...F(fn) into

1""fn in H we define the

F(E) . In the special case, where H is one dimensional
i 2 -1/2_-x2/2

and hence I'(H)=L°(R,3(R),(2m) e ax).r(u)n is the

one dimensional subspace spanned by the nth Hermite

polyrcrmial end :x": is the nth. Hermite polynomial
normalization so that the leading coefficient is 1.
We have the forrule

[:F(fl)..F(fn):,:F(gl)..F(gn):]
=zn[fn(1)’5’]”[f (n)ngn]° - (3!’)

where the sum is over all permutations mof 1,...n.
If all the f's and g's are equal, we get

n:)Ze—x2/2

[:F(£)": ,F(f)"]% 1/2000:x ax=n!. (35)

Let H) be the complexification of H (and let B

denote the n-fold Hilbert space) symmetric tensor

product of Hl with itself. On Ka-ve define the inner

product such that

[syn(£,2...0f ) ,Sya(e, 2. . .6 )I=R (g one)] L0 (1.6 168

where 1
Sym (fl...srn)?!z.“f“(l)ﬁ. ..ﬂfﬂ(n) 5 (37)

From (34) and (36), that the mapping
:F(fl)...F(fn): Sym(rlﬁ...efn)

extends uniquely to the unitary operator from I‘(H)n onto

H . We use this mapping to identify !‘(}{)n and H_.
Analogous to the fact that the one-dimensional Hermite
polyncnaials span L2(R,3(R),(ZN)-l/ae-xaledx), Segal proved

P(H)=£n=oﬁn. (38)
for erbitrary real Hilbert space H. I'(H) is Fock Spece.
I? the random field F(f)=/fdB, where

feLa(R)=H and B is the standerd Wiener process, the el-
ements of I'(H) are multiple Wiener integrals (in the sense
of Ito). o

The space I'(H) is intrinsically attached to the
structure of H as a rezl Hilbert space. Thus if U:H+K
is en orthogonal mapping of one real Hilbert space
into another, it induces a unitery mapping I'(U):I'(H)»T(K),
vhere on H_, r(u)=uglf5ﬂ{. Similarly if I:I+K is an

isometric embedding then it induces an isometric embed-
ding r(I): T(H)»T(X) and similarly for an orthogonal
projection E:H*K. If A:H?*K is a contraction then
T(A):T(#)*T(K) is defined to be the direct sum to
P(A)n:Hn*Kn, where F(A)n‘ﬂﬁ;f5§é° Now any contraction

A:H*X can be decomposed as

H —L v HaK — > KaH

\\\é‘ﬁb 'k
K
where I, U and E are as above.

Hence I'(A)=T'(E)T(U)T(1). Now I'(A) is doubly
Markovian in the sense that

a>C+T(A)a>0

r(a)1=1

ET(A)a=Ea. (39)
Any doubly Markovian operation is a contraction from
P to 1P,

It turns out thatT{A) has stronger contractive
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properties and the precise statement of this is an im-
portant theorem of Nelson. Before we discuss this
result it is useful to recall that conditional

expectations on Lz(Q,A,u) can be characterised as linear
positivity preserving operators which are idempotant,

of nora <1 and preserve constants. We also know that
for p [1,»], p#2, all linear operators T on LP(R,A,u),
which are idempotent, contracting and such that T1=1

is necessarily a conditional expectation.

Theorem 3.1 (lelson Hypercontractivity Theorem).
Let A:H¥K be a contraction. Then P(AE is a
contraction from L¥(#)+LP(k) for 1<q<p<= provided that
141 o09=1y1/2 )
M= (40)

If (L40) does not hold then I(A) is not a bounded

‘operator from LY(H}LP(K).
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